Fermi National Accelerator Laboratory

FERMILAB-Conf-87/162

User Friendly Far Front Ends’

J.R. Zagel and L.J. Chapman
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1987

*Submitted to the Europhysics Conference on Control Systems for Experimental Physics, Villars-sur-Ollon,
Switzerland, September 28-October 2, 1987

JE

e Operated by Universities Research Association Inc. under contract with the United States Department of Energy

USER FRIENDLY FAR FRONT ENDS

J. R. Zagel and L. J. Chapman
‘Fermi National Accelerator Laboratory »
Mail Station 307, P.0. Box 500
Batavia, Illinois, 60510, USA

ABstracb

For years controls group hardware designers
have designed microprocessor systems to accomplish
specific functions such as refrigeration control.
These systems often reguire years of software
effort.. The backlog of requests for even simple
additions or modifications to software in embedded
controllers has become overwhelming. We discuss
the requirements of "far forward" controllers. Can
we build a system that is modular enocugh to be
configurable for specific applications without
sacrificing performance? The hardware and software
framework must be complete encugh to isolate the
end user from the peculiarities of bit and byte
manipulation, but still allow system specifics to
be implemented by the user. Tt is time to provide
embedded controller systems as easy to use as
workstation consoles.

Historical Perspective

Evolution in data collection methodology has
provided new challenges and cpportunities. Only a
few years ago an engineer would design a very
specific collection of logic gates and analog
components into a module capable of a single simple
function. With the advent of microprocessors and
analog function modules the far-forward data
collection point now provides the services of what
was once the entire control system. While the
hardware designer now finds it convenient to
combine more functionality into the various modules
the bulk of the total control task has shifted to
the software designer.

Most early contreol systems were pure analog.
Qur present day systems are pushing the
digital/analog dividing ~ line closer to the
transducers and actuators. The digital interface
now is very much a part of the real world device.
Hence the control system processor must have an
intimate knowledge of the device it controls or
monitors.

How do we wmap what a computer knows
(instructions, variables), into the controls
problem (valves, temperatures, closed loops)? And
how much of that mapping should be done by system
software? Conventional tools provide such a poor
mapping that it is very difficult to write generic
software. The mapping is so complex, and so loose,
that the pumber of possibilities is enormous.
This, together with the creativity of programmers,
result in a bewildering variety of incompatible
approaches. But new paradigms (objects and
rules) give a much cleaner mapping from the control
system to the controlled system, wmaking gemeric
controls software more feasible.

A classical software problem has been: what
code should access what data? Originally any code
could sccess any data, which of course meant that
code often accessed data incorrectly, or at least
unwisely. Common blocks helped somewhat, in a
crude way. Structured programming languages

+ Operated by Universities Research Association
Inc., under contract with the US Department of
Energy.

demonstrated the ioadequacy of the structured’
approach. Now object-oriented languages, a gift
from the field of Artificial Intelligence, are
here. (Objects =olve the code/data organization
problem and are especially relevant to controls
programming.

Conventional computers are inherently
sequential as was early software (piano rolls,
looms) until the arrival of the GOTO statement.
¥hen the British invented subroutines, software
became less sequential. Multitasking made it less
sequential still, and now rule-based languages,
another gift from AI, are arriving, providing a
much closer match to the controls problem than more
sequential methods possibly can.

Definition

The User Friendly Far Front End (UFFFE) is the
collection of bardware and software that will be
provided to allow some useful contrel task at, or
close to, the controlled or monitored system. Its
task is any subset of data acquisition, conversion,
closed loop processing, and control output. One of
the main goals then is to identify the parts of the
system that are hard architecture and that can be
provided as generic, standard modules. These
wodules can be provided by the system thus freeing
the applications programmer to concentrate on the
specific control task.

The hardware in the UFFFE most certainly
includes many intelligent modules that can be
programmed for various applications. The software
to initialize, operate, and recover from fault
conditions is a part of the module design and must
be provided as a package that other software can
access. How to use the data is an appliecation
question whereas the acquisition is still specific
to the hardware involved.

Generic Rescurces

Hardware Objects

¥e have begun providing modules that accomplish
ever more complex functions. But we have fallen
into the trap of leaving out the software required
to access them. This coding then becomes part of
the task of every system programmer who typically
does not want to be concerned with the
peculiarities of bit and byte manipulation.

A new stage of design is required that
gpecifically devotes attention to setting up,
collecting or distributing data, and fault
reporting on a givern hardware module. A hardware
module together with its software is what we call a
bardware object.

All of the hardware present in today’s control
systems can be loosely classified as analog to
digital converters, digital to amalog converters,
digital input, digital output, controllers, and
communicators. (Questions of how many channels,
what speed, and what accuracy or resolution give
rise to the plethora of installation variations.
This will not change in the future. However it is
possible to think in terms of providing, for
instance, a wstandard fast A/D, multiplexed A/D,
etc., all complete with the software required to
access (and even filter} data, making it available
to the systenm.

Software Objects

A software object is a little packige of data
and code which =accesses: its data. Other objects

cannot access this data directly; rather they send.

messages to the object which result in the object
accessing its own data in its own way. [These
messages provide a clean black box interface around
each object. No object knows more about its
neighbors than it needs to know. Code is more
strictly partitioned and therefore easier to write
and maintain, allowing more generic code.

Objects can be used for many purpeses in a
control system. We have already described hardware
objects. Standard control algorithms like digital
filters and closed loops can be represented as
software objects. All these objects can send
messages representing data flow to one another: the
temperature sensor object gets the current
temperature, sends it te the digital filter object
which averages it with recent temperatures and
sends the average on to the PID loop object, which
calculates a new valve position and sends it on to
the relevant valve object (see Figure 1). Thus
objects can easily and naturally represent data
flow networks, which can easily and naturally
represent many control problems.

P T

Com,
ot
D Hargware Fam
T
O Software

Hargware

Doject FITER
e
—— Message "
— Hard conpection UPgTAC
L
iy M0
o

-1 LK & 39

Figure 1. Cryogenic UFFFE

The PID loop object in this example can be
coded generically because of the clean interface
provided by messages. The loop might cbtain its
input value by sending "read" messages to any
object that supports "read" messages, and similarly
send "set" messages to any object that is setable.
This would be difficult to code in a conventional
language. Object-oriented programming makes it
simple to code generically.

Finite state machines provide another example.
Many control sequence problems are naturally
expressed as state machines. Objects can easily
represent such machines, the state being remembered
by the machine object. Again this can be done in a
very generic way. Also, these two fundamental but
high-level paradigms, data flow and state machines,
can be combined in various ways; typically a state
machine watches over and controls a data flow
network, changing loop parameters and opening and
closing channels as the state changes. An informal
survey within the Fermilab Controls Group showed
that several control systems written in radically
different styles by various programmers boil down
to a state machine supervising a data flow network.

If generic support for these paradigms had been
available, these projects could have been done in
much less time. Similar claims have been made
often in the past, but object-oriented programming
should make the claims fulfillable.

The messages objects send one ancther can be
sent across communications networks. The network
structure, indeed the existence of the network
itself, is unknown to the objects, which see the
universe as a large collection of objects able to
send messages to one another. It should therefore
be easy for a closed loop object te run entirely
within one processor, or to get its reading froam
{and send its setting to) objects .in other
processors. Again this allows very generic code.

Rules

In rule-based programming, rules replace tasks
and subroutines. Bach rule is 1like a tiny task,
waiting for conditions to be just right for it to
fire, executing some actions. Rules communicate
with each other via facts. When a rule’s patterns
match existing facts, the —rule fires, most
typically asserting new facts which may eventually
cause further rule firings.

Facts provide a clean, flexible, powerful
interface among rules. A rule whose pattern
matches a fact neither knows nor cares who
generated the fact. Conversely, a particular fact
can be of interest to any number of rules. This
"fact interface" makes it possible for rules to be
very independent. Extremely geperic facts and
rules are possible.

The rule based paradigm is especially
appropriate for real time controls systems where,
as conditions change over time, variocus actioms
should be taken. Such actions can be coded
straightforwardly as rules. This structure seems
much closer to the controls problem than any more
sequential approach.

Application-Specific Resources

Generic rescurces are combined to create
specific applications. At this level the
application designer defines the types of loop
feedback desired, the input variables, output
variables, and possibly the frequency of updates
for the loop. The peculiarities of a particular
A/D board, such as =multiple readings omn a given
multiplexer channel, are of no concern to the
application. The application has every right to
assume that a datum is as accurate as the function
module can provide or that the module has reported
an error. The designer can work in a higher level,
concentrating on the control problem.

Hardware is available to accomplish many input
and cutput funmctioms. There always seews to be
some requirement which rules out the use of any
existing module. However there is now a
significant selection of off-the-shelf equipment
that is well defined in both hardware and software.
New apparatus can be designed to fit the present
interface scheme with only the additional features
added.

When a new type of object is required, say a
valve with a new parameter, it need not be coded
from scratch. Since object types are hierarchical,
it is very easy to specify that the new kind of
valve is just like the standard wvalve with one
exception. What all valves have in common is coded
in one place; what is unique to the new valve is
coded in one other place. This allows powerful,
generic system code representing what is common to
all control systems. Specific applications can
begin with the generic code =and add ONLY the code

Facts:
EERTER

value us-temp 9)

valua de-temp 23
maximum-veiue us-temp 10
cares conscle-12 dt—t-mp;

The up-stresm temperature la currently 9.

The down-stresm temparature is currently 3.
Up-stresm temperature should be lese than 18,
Conscle 12 has slarms énsbled for the

. down-stream temparsture.

Generic alarm rules:

(defrule going-high
maximum—velue Tvar Tmax)
values Tvar Tval&>?Tmex)

=)

(sssert (too-high Tvar)})
(defrule going-out-of-bounds
or

too-high Tvar
too-low Tvar)

(assert (out-of-bounds Tvar)))

(defrule notify-interested-conscles

out-of-bounds Tvar)
cares Tc Tvar)

L2
(send-message Tc Tvar
geing-out-of-bounds))

A vary specific, easy-to-add rule:

{(defrule us-temp-too-high
ztoo—high us-temp)
of f wet-engine)
=3
(open us-valva))

If a varisble has & maximum,

and that varisbla’s current valus
in grester than Tts maximum,

then

that verisble is too high.

If » variable

im too high
or too low,
then

that varisble is out of bounds.

If a variable goss out of bounds,
and some console cares about it,
then

tell that conscle.

It the up-stream temperature Ia high
and the wet engine is off,

then

open the upstream vaive.

Figure 2. ART] Coded Example

necessary to describe what is unique to that
application.

fne of the chief advantages of rule-based
systems is the independence of the rules: ideally
each rule expresses a single concept. Rules, and
therefore concepts, can be added or removed
independently. Some rules can therefore express
very generic concepts and be part of the system:
concepts like periedicity or alarms. Other rules
ecan express application specific concepts like
*whenever the up-stream temperature is too high and
the wet engine is off, open the up-stream valve"”
(see Figure 2). Such rules can be added easily
because rules are independent and communicate via
tacts. Facts such as T"temperature 7 too high" can
trigger generic rules such as "when anything is too
high, notify anyone who cares” as well as
application specific rules like the one sketched
above.

Structure

The UFFFE could be

components described above. The task before us is
to provide a system with a processor,
communications capability, a varied selection of
input/output capabilities, and the software modules
to tie these components together.
’ An example of this process can be found in the
personal computer. Here a collection of processor,
communication, mass storage, keyboard, mouse, and
video display is assembled with st least an
operating system to get the system running.
Starting with this base a host of specialiged
applications code is written to accomplish a number
of various tasks.

An UFFFE is a collection of hardware and
software modules to accomplish a specific task. As
such it may require the services of a network to
move data. When we provide the hardware that cares
about the intricacies of signal levels and bit
rates, we also provide the networking software to
initialige the hardware and move data. This is
true regardless of the actual media. In time our

assembled using the

generic system would accommodate any standard
networking scheme. Since the interface to UFFFE is
well specified any new networking scheme can easily
be added as the need arises.

Conclusion

The advent of new software paradigms and modern
hardware finally make it possible to design truly
modular systems with +truly generic components.
Hardware modules and their associated software are
supplied as complete objects. Clean interfaces
make it easy to add both generic and application-
specific objects to an UFFFE, which itself presents
a clean interface to the outside world.

References
[1] ART - Automated Reasoning Tool.
Trademark of Inference Corporation.
5300 W. Century Blvd., Los Angeles,

California, 90045, USA.

